Logo
 Logo
  • Home
  • Technologies
  • Metals
    NickelIronLithiumRare EarthCopperUranium
  • Products
    ProductsPilot plantsPowdersNano PowdersProduct Development
  • Resources
  • Other
    RecyclingGraphite/Graphene
  • News & Media
    CVMR NewsPress Releases & EventsReferences & PublicationsVideosFeed
  • About Us
    Client ListCVMR PatentsManagement
  • Contact Us
 Logo menu_vert
  • CVMR Corporation Logo Svg
  • home Home
  • biotech Technologies
  • layersMetals
    • Nickel
    • Iron
    • Lithium
    • Rare Earth
    • Copper
    • Uranium
  • categoryProducts
    • Products
    • Pilot plants
    • Powders
    • Nano Powders
    • Product Development
  • inventory_2 Resources
  • autorenewOther
    • Recycling
    • Graphite/Graphene
  • newspaperNews & Media
    • CVMR News
    • Press Releases & Events
    • References & Publications
    • Videos
    • Feed
  • publicAbout Us
    • Client List
    • CVMR Patents
    • Management
  • contact_mail Contact Us
Home CVMR News Understanding the Factors Affecting the Formation of Carbonyl Iron Electrodes in Rechargeable Alkaline Iron Batteries

Understanding the Factors Affecting the Formation of Carbonyl Iron Electrodes in Rechargeable Alkaline Iron Batteries

Author: CVMR®
Date of publication: 12.02.2013
Reading time: 3 min.
814

Understanding the Factors Affecting the Formation of Carbonyl Iron Electrodes in Rechargeable Alkaline Iron Batteries

Aswin K. Manohar, Chenguang Yang, Souradip Malkhandi, Bo Yang, G. K. Surya Prakash and S. R. Narayanan,z

Abstract

Rechargeable iron-based alkaline batteries such as iron – air and nickel – iron batteries are attractive for large-scale electrical energy storage because iron is inexpensive, globally-abundant and environmentally-friendly. Further, the iron electrode is known for its robustness to repeated charge/discharge cycling. During manufacturing these batteries are charged and discharged 20 to 50 times during which the discharge capacity of the iron electrode increases gradually and attains a stable value. This process of achieving stable capacity is called formation. In this study we have focused our efforts on understanding the effect of electrode design on formation. We have investigated the role of wetting agent, pore-former additive, and sulfide additive on the formation of carbonyl iron electrodes. The wetting agent increased the rate of formation while the pore-former additive increased the final capacity. Sodium sulfide added to the electrolyte worked as a de-passivation agent and increased the final discharge capacity. We have proposed a phenomenological model for the formation process that predicts the rate of formation and final discharge capacity given the design parameters for the electrode. The understanding gained here will be useful in reducing the time lost in formation and in maximizing the utilization of the iron electrode.

Article from: http://jes.ecsdl.org/content/159/12/A2148.abstract

Pdf link: http://ma.ecsdl.org/content/MA2012-02/5/371.full.pdf+html or Here

Answers to your questions

  • What does CVMR do?

    CVMR refines metals using vapor metallurgy and produces high-purity powders and components for various industries.

  • What metals does CVMR work with?

    CVMR works with over 30 metals, including nickel, cobalt, lithium, rare earth elements, gold, silver, and copper.

  • Who uses CVMR’s products?

    CVMR’s products are used in aerospace, automotive, electronics, medical devices, energy storage, and defense.

  • What is vapor metallurgy?

    It’s a process where metals are vaporized and purified to produce ultra-pure materials with precise control.

  • Is CVMR eco-friendly?

    Yes, CVMR uses sustainable methods like recycling metals, reducing CO₂, and turning methane into graphene.

  • Where is CVMR located?

    CVMR is based in Toronto, Canada, and operates in over 20 countries globally.

  • Who are CVMR’s clients?

    Clients include Pratt & Whitney, U.S. Mint, Virgin Galactic, Barrick Gold, and the U.S. Department of Energy.

  • Does CVMR make battery materials?

    Yes, CVMR supplies lithium, nickel, cobalt, manganese, and vanadium for electric vehicle and storage batteries.

  • What is CVMR’s role in graphene?

    CVMR converts CO₂ and methane into high-quality graphene for electronics, energy, and advanced material use.

  • How do I contact CVMR?

    Visit https://cvmr.ca or email [email protected] for business inquiries and more information.

Did you like the article? Share:

Read also

Amarillo City Council approves ‘historic’ economic development-related measures
CVMR®

Amarillo City Council approves ‘historic’ economic development-related measures

by: David Gay AMARILLO, Texas (KAMR/KCIT) — Officials from the Amarillo Economic Development Corporation, along with the Amarillo City Council, expressed numerous times how historic Tuesday’s regular meeting was, with the council passing five economic development-related measures that could bring in billions of dollars in economic impact if two new companies choose to call Amarillo home. “This might be a grand slam,” Amarillo Mayor Ginger Nelson said during the meeting. “Thirty-three years the EDC …
Читать
May 24, 2022
CVMR and AREVA Announce an Alliance for Metal Powder Production and Refining Facilities
CVMR®

CVMR and AREVA Announce an Alliance for Metal Powder Production and Refining Facilities

Toronto, Ontario (PRWEB) November 03, 2014 Chairman and CEO of CVMR® Corporation (CVMR®) of Canada, Kamran M. Khozan, and Tara Neider, President and CEO of AREVA Federal Services LLC (AFS), a U.S. subsidiary of AREVA, announce an alliance for the deployment of metal powder production, refining and manufacturing plants in the United States. The plants will position CVMR® as the industry leader for powdered metal production based on their proprietary systems and technology. The …
Читать
Nov 02, 2014
Six finalists announced in Ontario’s global challenge to reduce greenhouse gas pollution – Ontario Centres of Excellence
CVMR®

Six finalists announced in Ontario’s global challenge to reduce greenhouse gas pollution – Ontario Centres of Excellence

TORONTO, May 7, 2018 – Today, Ontario Centres of Excellence (OCE) announced the first cohort of finalists for Ontario’s Solutions 2030 Challenge – a global call for innovators to propose solutions that could help Ontario industry reduce greenhouse gas (GHG) pollution. The initiative is part of the province’s broader TargetGHG program, which is administered by OCE on behalf of the Ministry of Research, Innovation and Science and the Ministry of the Environment and Climate …
Читать
May 07, 2018

Contact Us

Navigation

Technologies
Metals
Nickel
Iron
Lithium
Rare Earth
Copper
Uranium
Products
Pilot plants
Powders
Nano Powders
Product Development
Resources
Other
Recycling
Graphite/Graphene
News & Media
CVMR News
Press Releases & Events
References & Publications
Videos
Feed
About Us
Client List
CVMR Patents
Management